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ABSTRACT 

This study explores the homotopy-theoretic meeting-point of topics in differ- 
ential topology, combinatorial group theory and algebraic K-theory. The first 
two are due to H. Hopf and date from around 1930. The third arose in the 
author's characterisation of plus-constructive fibrations. Let F ~ E --- B be a 
fibration such that i induces an isomorphism of homology with trivial integer 
coefficients; what is the effect of i on fundamental groups? In particular, when 
one passes to hypoabelianisations by factoring out perfect radicals, does i 
induce an epimorphism? Numerous conditions are determined which force 
an affirmative answer. On the other hand, negative examples of a non-finitary 
nature are also provided. This leaves the question open in the finitely 
generated case, where it forms a homological version of the dual to Hopf's 
original, famous question in group theory. 

1. Introduction and history 

The origins of this work lie in two research topics of Heinz Hopf, related in 
time as well as by author, but apparently mathematically unconnected until 
now. Each is well known, the former by differential topologists and the latter 
by combinatorial group-theorists. 

1.1. [14] Let f:  MI~M2 be a smooth map between closed, connected 
orientable n-manifolds. I f  f induces an isomorphism of integral homology 
groups, then it induces an epimorphism of fundamental groups. 

Certain extensions beyond the smooth category are readily available. The 
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question naturally prompted by these results concerns the most general 

category for which a map f :  X--- Y with H , ( f )  an isomorphism must have 

nl(f)  surjective. (Homology is to be taken as having trivial integer coef- 

ficients.) The example of  an embedding of  any space X in its direct product 

with a non-contractible acyclic space shows that some modification is required 

(cf. [6]). Here we consider the surjectivity of the homomorphism rt~(f)~. 

defined in the following way. 

Since the fundamental group of an acyclic space Z has trivial abelianisation 

Ha(Z) it is a perfect group. Now any group G contains a unique maximal 
perfect subgroup (its perfect radical) ~G,  the intersection of its transfinite 

derived series and so characteristic in G. The quotient G/~'G is hypoabelian 

(that is, ~'(G/~G) = 1) and indeed the hypoabelian residual of  G. By analogy 

with the term abelianisation for the abelian residual of  a group, we may refer to 

G~ ~ G  as the hypoabelianisation G~, of G. As are derived groups and abeliani- 

sation, the perfect radical and hypoabelianisation are functorial m thus a 

group homomorphism ~ : G ~ H gives rise to ~ : ~ G  ~ ~ H  and ~ ,  : G~, --- 
H~,. Observe that when ~ is the inclusion of G in its direct product with a 

perfect group, then the homomorphism ~ ,  is just the identity. 

1.2. [15] Let N be a normal subgroup of a finitely generated group G. I f  G 
and G/N are isomorphic, must N be trivial? 

As a result of  (1.2), groups isomorphic to no proper quotient are known as 

Hopfian. Two dual notions are feasible. The one, taking the dual of an epimor- 

phism to be a monomorphism, is called the co-Hopfian property (see [17]). The 
other asks when a proper normal subgroup of a group G can be isomorphic to 
G; since our interest lies not in isomorphisms but in homology equivalences, 
this is the more appropriate dual, as the following example suggests. 

EXAMPLE 1.3. (a) I f  a finitely generated free group G admits a normal 
subgroup N such that the inclusion l: N ~ G induces an isomorphism H.(t), 
then N = G. 

(b) However, the inclusion of the proper, non-normal subgroup Fr(s, t2s - ~t- 1) 
in the free group Fr(s, t) of rank 2 does induce a homology isomorphism. 

PROOF. (a) By [17 1.3.8, 1.3.9, 1.3.12], we have that the index o f N i n  G is 

r k ( N ) -  1 
I G : N I  

r k ( G ) -  1 
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where rk(N) denotes the rank of the free abelian group HI(N). 
(b) On the other hand, since free groups admit no higher homology, any 

isomorphism of abelianisations is a homology isomorphism. The given 
example yields the automorphism of Z ~ Z corresponding to (] 0) in S~(Z). [] 

We again exclude the unwelcome influence of acyclic groups by passing to 
hypoabelianisations, and ask under what circumstances the following holds. 

CONDITION 1.4. I f  N ~-L, G--~G/N is a group extension with H.(t) an 
isomorphism, then l~, is an epimorphism. 

Since the classifying space functor G~--,BG sends group extensions to 
fibrations, there is the following generalisation relating to (1.1) above. 

CONDITION 1.5. I f  F ~ E ~ B is a fibration with H.(i)  an isomorphism, 
then n~(i)~, is an epimorphism. 

Thus (1.1) provides an example, (A) say, of a situation in which (1.5) holds. 
Matters related to (1.5) (when F = E) are discussed in [13]. All our other 
examples pertain more directly to (1.4). There is no loss of generality in 
restricting attention to (1.4), in the following sense. 

PROPOSITION 1.6. Condition 1.4 holds for all groups if  and only if  Con- 
dition 1.5 holds for all spaces. 

(Unless otherwise stated, all spaces, including fibres of fibrations, are 
assumed to be of the homotopy type of connected CW-complexes.) This result 
is proved at the end of Section 2 of this article. In its stated form, its force is 
diminished by the existence of examples (see Section 3 below) negating both 
conditions. However, it suggests that to each class of groups for which (1.4) 
holds there corresponds a class of spaces for which (1.5) is also true. The 
correspondence is given by theorems of Kan-Thurston type m see [6], [10]. 

Example (B) of the validity of (1.4), (1.5) is provided by (1.3)(a) above. 
Further evidence is as follows. 

EXAMPLE (C). (1.4) holds i fG is a finite group [9]. 

EXAMPLE (D). (1.4) holds if G is a nilpotent group [18], [19]; more 
generally, (1.5) holds i fE  (hence F [7]) is a nilpotent space [7]. 

EXAMPLES (E), (F). Further support for (1.4) is provided by S. Jackowski 
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and Z. Marciniak of Warsaw (private communications) when G is rcspectively 
a cocompact or 1-relator group. 

Further progress depends on a topological analysis of the situation, in the 

next section. This leads to new examples, generalising (B), ((2) and (D) above, 

in §3. It is interesting (mathematically, as well as historically) to record how my 

interest in this problem came about. In characterising plus-constructive 

fibrations F--* E ~ B (those for which application of Quillen's plus-construc- 

tion results in another fibration F + --* E + --* B +) [3], I found the following two 

conditions to bc necessary (and each, in favourablc circumstances, sufficient). 

CONDITIONS 1.7. (i) ~'Th(B) acts trivially on H,(F) .  
(ii) ~Ttl(p) is an epimorphism. 

(Condition (ii) is elsewhere described by the phrase "~ l t l (p)  is an epimor- 
phism preserving perfect radicals".) Known examples of fibrations for which 
(ii) holds but not (i) include some of considerable significance for algebraic K- 
theory. However, none satisfying (i) without (ii) is readily available. This 
prompted the following. 

PROBLEM 1.8. In (1.7), does (i) imply (ii)? 

It turns out (Proposition 2.9 below) that this problem is intimately con- 
nected to our Condition 1.5. 

2. Simplification 

The following result, basic to our development, is doubtless quite well 
known. (Indeed, in our last conversation together, at the Berkeley ICM, Alex 
Zabrodsky outlined a spectral sequence proof.) However the proof below may 
have some novelty value. It is a pleasure to acknowledge the stimulation of an 
Oberwolfach conversation with M. Dyer in this connection. 

LEMMA 2.1. Suppose k >- 1. I f  the fibration F - -  E -* B has It~(F)-- Hj(E) 
an isomorphism for all i <- k then both 

(i) Itl(B) acts trivially on Hi(F) for all i < k, and 
(ii)/~i(a) -- O for all i < k. 

Conversely, (i) and (ii) together imply that !ti(lO ~ Hi(E) is an isomorphism for 
all i < k and an epimorphism for i ffi k. 
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REMARKS 2.2. (a) In the presence of(ii), making lh(B) perfect, (i) is by [2] 
equivalent to the nilpotency of the action of n~(B). 

(b) The bound stipulated in the converse is sharp; for example the classify- 
ing space fibration of the central extension Z/2 ~ SL(2, 5)--~ PSL(2, 5) satisfies 
(i) and (ii) with k = 1, but the epimorphism H~(Z/2)---, H~(SL(2, 5)) fails to be 
an isomorphism. 

PROOF. The sufficiency of (i) and (ii) is an immediate application of the 
Serre homology sequence. To prove their necessity, we recall that lh(E) acts 
trivially on H.(E) and thence, by injectivity, on H.(F). Then surjectivity of 
n~(E) ~ lh(B) implies that the action of Th(B) on H~(F) is also trivial. To obtain 
(ii), we first note that the case i = 1 follows from the usual exact sequence 

no(n; H l (F)) --" H~ (E) -" Hz (B) 

whose former homomorphism here reduces to the epimorphism H~(F)-~ 
Hi(E). Because 7q(B) is thereby perfect, so that lh(B)~,~ 7q(pt)~,, we may 
apply to the map of fibrations 

F ,E ,B 

id 
E , E ,pt  

the Serre spectral sequence comparison theorem [ 12 Theorem 3.5] as extended 

in [2]. This yields (ii). [] 

An attempt to generalise Lcmma 2.1 to a a mod ~ version meets with 
unexpected subtleties. 

PROPOSITION 2.3. Let ~ denote a Serre class of  abelian groups. Suppose 
that the fibration F ~ E -~ B has Itj(i) an isomorphism rood ~f for j < k, where 
k < 3 .  Then I t j ( B ) ~  for j_-<min{k, 2} and, when k = 3 ,  H3(B)~- 
H~(B; HI(F)) mod ~.  Moreover, when the fibration is the classifying space 
fibration for a group extension N ~-~ G--~G/N, H~(Q; H~(N)) is isomorphic 
mod qf to Hm(N)®elQ. 

PROOF. The proof involves chasing diagrams in the Serre spectral 

sequence, for which we use standard notation. We work mod ~f, and in the 

diagrams linear sequences of maps are exact. First, from 
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d2 
~ 8  

we have, since Hli is mono, that 
(a) HIF--" Ho(B; H1F) is iso, 

and 
(b) d 2 : H2B --" Ho(B; HIF) is zero, 

and, since H~i is epi, that 
(c) HIB = O. 

Second, 

H2F 

d2 
E~o ~ H2B 

implies 
(d) d 2 : H2B --'Ho(B; HIF) is mono. 

From 

e ,o ", 
(e) d3 : E~,o -"Eo32 is zero, 

and 
( f )  d 2 : H3B --, H~(B; HIF) is epi. 

Next, combining (e) above with 

H3F 

1 
H~ 

HIF 

, Ho(B; HIF)  --" HIE  --~HIB 

,Ho(B;H~F) 

H2E E~,l ~ H i ( B ;  HIF)  ' 
: ' , , , t  

H2F Fl 

~ E~,2, 

HI(B; H~F) 

H~ 

an 

oo 3 an 
E3,0 >"-)E3,0 ~ E3,2 

H~B 
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g ives  

(g) d 2" H3B ~ HI(B; HIF) is mono. 
Finally, 

(h) Hz(Q; H~N)--, H~(N)®QIQ is iso 
because of (a) and the classical exact sequence 

H,(Q; H,N) >-,, H,(N) @Q IQ --* HIN--~ Ho(Q; H,N). [] 

We now come to the result [4 (3.9), (3.8)] which translates Problem 1.8 into 
one reminiscent of Hopf's earlier work. Notation is given by the following 
diagram showing the map of fibrations generally obtained by applying the plus- 

i p 
construction to F ~ E ~  B. 

F t , F :  

E , E + 

B ,B + 

LEMMA 2.4. Let F ~ E ~ B  be a fibration with Hi(B) = O. 
(i) 7tl(B) acts trivially on H,(F)  i f  and only i fH,( t )  : H,(F) --. H , ( F f  ) is an 

isomorphism. 
(ii) ~n l (p)  is an epimorphism if  and only i f  hi(t) : n~(F)--, n l (Ff  ) is. [] 

REMARK 2.5. Again, there is an "up to dimension k" version of (2.4)(i); 
less predictably, a study of the proof of [4 (3.9)] reveals that each condition in 
(i) is equivalent to the injectivity ofH~(t) (i _-< k). This fact leads immediately 
to the necessity of (i) in (2.1) because the isomorphism Hi(F)--,H~(E)--, 
Hi(E + ) factors through Hi(t). 

Since (2.1) dictates that the inclusion of the fibre induces a homology 
equivalence only in the presence of an acyclic base, we now consider a 
canonical method of passing to such a fibration. 
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F F 

:1 1 
/~ , E  

1 
M B  , B 

In this pull-back diagram, MB ~ B ~ B + is the acyclic fibration of Quillen and 
Dror's acyclic functor as in, for example, [1 ch. 7]. We recall from [4 (3.7)] 

that, because ~Xl(B +)---- 1, ~x~(p) maps onto precisely when ~Tq(/~) does. 
Moreover, the assumption that xl(B) is perfect makes x~(MB)~ ~z~(B) epi; 
therefore x~(MB) acts trivially on H.(F) if and only if x~(B) does. This fact 
combines with (2.1) (k infinite) to produce (i) of the following (in the above 
notation). 

THEOREM 2.6. Let F ~  E ~ B be a fibration with HI(B) = O. 
(i) 7q(B) acts trivially on H,(F)  i f  and only i f  H,(O is an isomorphism. 
(ii) I f  any of  the three homomorphisms ~Tq(p), ~l(i)~, and zh(O~, is an 

epimorphism, then so are the other two. 

PROOF. Only (ii) still requires proof. Since we have already deduced the 
equivalence of the surjectivity of ~x~(p) and ~x~(/~), it remains to compare 
the former with x~(i)~,. We chase the following commutative diagram, noting 
that, since nl(B) is perfect, xl(B +) is trivial and 7~l(Fp+)-~rq(E +) -~ 7~I(E)~, is 
an epimorphism. 

~I(F  ) z,(t) , 7~l(Fp+) 

x~(i) 

~l(E) ,, x1(E)~. 

Clear ly  ~l( i )~ is epi provided ~(t)  is. However, by (2.4Xii) this is implied by 
(in fact equivalent to) ~Tq(p) being epi. 

A second chase of the above diagram establishes the converse whenever it is 
known that n~(Fp.)~Xl(E)~ is an isomorphism. This happens when B + is 
2-connected, in other words, when HI(B) ffi H2(B) = 0. We proceed to deduce 
the general case from this result. To do this, let S be the space labelled B3 in 
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[1 (7.1)], namely the fibre of the map B ~ K(H2(B), 2) that corresponds to the 
identity homomorphism on H2(B) under the isomorphism 

Hom(H2(B), H2(B )) ~ [B, K(H2(B ), 2)] 

given by the universal coefficient formula (since HI(B)= 0). We form the 
pull-back diagram of fibrations 

K(H2(B), 1) 

K(H2(B), 1) 

F F 

1 1 
,R  r , E  

1 
, S  ,B  

and observe that the general assertion follows immediately from the following 
three facts. 

(a )  H1(S) = H2(S) - -  0;  

(b) ~zt,(p) is epi i f  and only if  ~rq(q) is epi; 
(c) n,(R)a,~-- nl(E)a,. 

Now the frst of these claims is proven in [1 (7.1)]. The second is an application 
of [4 (3.7)] to the above diagram. For (c), observe that because the kernel K 
of n~(r) : 7t,(R)~ n~(E) is central in zt~(R), it lies in ~'nl(R) and ~zt~(r) is epi. 
So the extension K ~  n~(R)~n~(E) restricts over ~n,(E) to the extension 
K,--~ ~x~(R)--~ ~n~(E). The stated isomorphism of quotients follows. [] 

REMARK 2.7. In (2.6), (i) remains valid with aCB ~ B  replaced by any 
/~ --- B with/~ acyclic, so long as the image of n,(B) in its(B) normally generates 
n~(B). On the other hand, in respect of (ii), for any map f : /~ ---B, ~rtl(p) is 
epi whenever ~n~(i#) and ~ n l ( f )  are; however the converse is more pro- 
blematic (see the proof of[1 (3.7)]). 

There is a group-theoretic counterpart to Theorem 2.6. It arises from the 
following analogue of Dror's acyclic space construction, introduced in [ 11 ] (for 
further refinements see [6]). Let Q be a perfect group. Then, as in [ 11 (5.7)], any 
epimorphism from a free group Fi to Q factors through the inclusion of Fi in 
the derived group Ff+l of a further free group Fi+,. Then # 'Q = (.JF~ maps 
onto Q; since locally free, it shares with free groups the property that its 
homology in dimensions higher than 1 is trivial (because homology commutes 
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with direct limits), and since by construction it is perfect it is therefore an 
acyclic group. We now consider the induced group extension 

N ~ , G  ~ Q  

N ~ ' , G  " z Q  

The following result is an immediate application of Remark 2.7 to the above 
situation. 

COROLLARY 2.8. Let N ~ ' ,  G --~ Q be a group extension with Q perfect. 
(i) Q acts trivially on H.(N) if  and only if  H,(Z) is an isomorphism. 
(ii) ~ 'n is an epimorphism if and only if  l~, is, and each is an epimorphism 

if  i~, is. [] 

We shall now combine (2.6) and (2.8) in order to establish the metatheorem 
linking Conditions 1.4 and 1.5 as well as Problem 1.8. 

PROPOSITION 2.9. The following are equivalent. 

(i) (1.4) holds for all extensions N ~L~ G--~ Q. 
(ii) I f  an extension N ~ G--~ Q has ~ Q  acting trivially on H.(N), then ~rt 

is an epimorphism. 
(iii) I f  a fibration F ~  E ~ B has ~rq(B) acting trivially on H.(F), then 

~rq(p) is an epimorphism. 

(iv) (1.5) holds for all fibrations E L  E ~ B. 

PROOF. We argue in the direction (i) =* (ii) =* (iii) =* (iv) =* (i). As pre- 
viously noted, (i) is just a special case of (iv), while the second implication is 
part of the statement of [6 (1.5)]. Next observe that we may assume that in (ii) 
(respectively (iii)) Q (resp. n~(B)) is a perfect group. This is seen by taking the 
induced extension (resp. fibration) over ~ Q  (resp. the covering of B associated 

to ~nl(B)). To prove the first implication, let N ~-* G ~ Q  be an extension 
with Q perfect and acting trivially on H,(N). So by Corollary 2.8(i) H. ( i )  is an 
isomorphism. From (1.4) i~, is therefore surjective, whence (2.8)(ii) completes 
the implication. The final argument, showing (iii) implies (iv), proceeds 
similarly, using in turn (2.6)(i), (1.5) and (2.6)(ii). [] 
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3. Further results 

In this section we shall see how information obtained in §2 can be used to 
extend the list of examples of the validity of Conditions 1.4 and 1.5. First wc 
may combine Theorem 2.6(ii) with [4 (2.3)], which lists various sufficicnt 
conditions for ~x~(p) to be surjectivc. (We denote the mth derived subgroup 
of a group G by G ~m), so G ' =  G ° )=  [G, G] and G m = G ~m-~)'. Also, let 

K = Im 7t~(i) -- Kcr 7t~(p) < 7t~(E).) 

EXAMPLE (G). (1.5) holds whenever ~I(P) is split. 

EXAMPLE (S). (1.5) holds whenever ~z1(E) <m) _-< K. ~Irl(E) for some finite 
m (and so whenever ~h(E) is perfect-by-soluble). Note that this broadens 

Examples (G) and (D). 

EXAMPLE (I). (1.5) holds whenever At") < ~Tt](E) for some finite n (and so 
whenever 7t~(F) is perfect-by-soluble). 

EXAMPLE (J). (1.5) holds whenever the homomorphism ~ ( E ) ~  
A u t ( K / ~ K ) ,  induced by conjugation, has hypoabclian image in 
Out(K/~K) = Aut(K/~K)/Inn(K/~K).  

Of course, in the situation of (1.4), K is just N, and Example (J) may bc 
strengthened by the observation that it suffices to have hypoabelian image in 
Outh(AT) ---- Ker[Out(N) ~ Aut(H.(N))]. A consequence of this is the following, 
which relies on Theorems B and C of [8]. For the proof, sec [6 (1.3)]. 

EXAMPLE (K). (1.4) holds whenever N is itself an extension of a character- 
istic subgroup by a group of form F / R '  where F is a non-cyclic finitely 
generated free group, R ~ F '  is normal in F and F / R  is residually torsion-free 
nilpotent. The special case where R is trivial and N is a finitely generated free 
group is Example (B). 

Of the above examples, only (K) exploits the action on homology groups, 
and then only the first. Fuller use of this action requires recourse to (2. I) above 

and knowledge of the group-theoretic structure of acyclic groups imparted by 
[6]. The former of these examples shows that for H,0) to bc an isomorphism 

G - N must contain relatively few elements of finite order. 

EXAMPLE (L). Suppose G admits a subgroup M of finite index which 
contains N but does not contain all elements of finite order in G. Then Q 
admits a subgroup of finite index which fails to contain all elements of finite 
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order. By [6] such a Q cannot be acyclic, so that by (2.1) Condition 1.4 holds 
vacuously. 

EXAMPLE (M). Suppose that G is generated by elements of finite order, 
and that Out(N) (or Out(N/~N)) admits a (subnormal) series whose factors 
are either torsion-free, hypoabelian or residually linear. (The last term means 
that any element of a factor group is mapped non-trivially by some linear com- 
plex representation of the factor.) By [6] and (2.1) again, the acyclic group Q 
must have trivial image in Out(N/~N), making l~, surjective as in Example (J). 

Finally, we consider group extensions which violate Condition 1.4. One 
class of examples is presented in [6]. It relies on special properties of the 
derived length and generating sets for subgroups in finite nilpotent groups. 
Although groups obtained in this way can be countable, they are clearly 
infinitely generated. A more natural kind of example is the following, which is 
based on joint work of B. Hartley, M. Kuzucuo21u and V. Turau at Manches- 
ter. (I am grateful to them for permission to use this unpublished work.) 

EXAMPLE 3.1. Let P be an arbitrary perfect group. As in §2 above, 
construct the acyclic group Q -- ~rp __ UFi where each F~ (i E N) is free. Let N 
be the restricted direct product of the Fi, that is, 

N ffi {(Xl, x2 , . . . )EI I  F, [ 3 h s.t. V i > h, x, ~ 1 }, 

where II F; stands for the unrestricted Cartesian product. Define also 

G = {(x,, x2 , . . . )~ r l  F, I 3h s.t. Vi >h,x, •Xh}. 

Then the homomorphism it : G ~ Q that sends each (xl, x2 . . . .  ) to its xh is 
evidently an epimorphism with kernel N. Given g EG and a finite set 
g~ . . . . .  g~ of elements of N, there is a number n such that no g] contains more 
than n non-trivial entries. Let g'  be the element of N whose first n entries are 
those of g, with the remainder trivial. Then conjugation by g coincides with 
that by g' on the subgroup NI of N generated by g [ , . . . ,  g~; since it therefore 
corresponds to an inner automorphism of N, the image in H.(N)  of its action 
on H.(NI) is the identity. Now H.(N) is just the direct limit of such H.(NI). So 
the action of Q on H.(N) is trivial. By (2.1) it follows that z: N ~ , G induces 
an isomorphism in homology. 

On the other hand, recall that free groups are residually nilpotent (e.g. 
[ 17 I. 10.2]). That is, their normal subgroups affording nilpotent quotients have 
trivial intersection; equivalently, given non-trivial x~ in F~, there is a nil- 
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potent quotient S(xi) of Fi into which xi maps non-trivially. Then g is also seen 
to be residually nilpotent because (x~, x2 . . . .  ) maps non-trivially into the 
nilpotent quotient 1-I S(x~) of G. Thus G is hypoabelian and z~, = t is not an 
epimorphism. 

An intriguing aspect of  the above example is that it is no closer to being 
finitely generated than is that given in [6]. This prompts the following 
question. 

Qt~EsrIoN 3.2. Is Condition 1.4 valid for all finitely generated groups N, G 
or Q? 
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